Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Intensive Care Med ; 48(11): 1525-1538, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2027451

ABSTRACT

PURPOSE: Benefit from convalescent plasma therapy for coronavirus disease 2019 (COVID-19) has been inconsistent in randomized clinical trials (RCTs) involving critically ill patients. As COVID-19 patients are immunologically heterogeneous, we hypothesized that immunologically similar COVID-19 subphenotypes may differ in their treatment responses to convalescent plasma and explain inconsistent findings between RCTs . METHODS: We tested this hypothesis in a substudy involving 1239 patients, by measuring 26 biomarkers (cytokines, chemokines, endothelial biomarkers) within the randomized, embedded, multifactorial, adaptive platform trial for community-acquired pneumonia (REMAP-CAP) that assigned 2097 critically ill COVID-19 patients to either high-titer convalescent plasma or usual care. Primary outcome was organ support free days at 21 days (OSFD-21) . RESULTS: Unsupervised analyses identified three subphenotypes/endotypes. In contrast to the more homogeneous subphenotype-2 (N = 128 patients, 10.3%; with elevated type i and type ii effector immune responses) and subphenotype-3 (N = 241, 19.5%; with exaggerated inflammation), the subphenotype-1 had variable biomarker patterns (N = 870 patients, 70.2%). Subphenotypes-2, and -3 had worse outcomes, and subphenotype-1 had better outcomes with convalescent plasma therapy compared with usual care (median (IQR). OSFD-21 in convalescent plasma vs usual care was 0 (- 1, 21) vs 10 (- 1, to 21) in subphenotype-2; 1.5 (- 1, 21) vs 12 (- 1, to 21) in suphenotype-3, and 0 (- 1, 21) vs 0 (- 1, to 21) in subphenotype-1 (test for between-subphenotype differences in treatment effects p = 0.008). CONCLUSIONS: We reported three COVID-19 subphenotypes, among critically ill adults, with differential treatment effects to ABO-compatible convalescent plasma therapy. Differences in subphenotype prevalence between RCT populations probably explain inconsistent results with COVID-19 immunotherapies.


Subject(s)
COVID-19 , Adult , Humans , COVID-19/therapy , Critical Illness/therapy , Biomarkers , Cytokines , Treatment Outcome , COVID-19 Serotherapy
2.
Danish Medical Journal ; 69(5), 2022.
Article in English | GIM | ID: covidwho-1989656

ABSTRACT

Introduction. Knowledge of the seroprevalence and duration of antibodies against SARS-CoV-2 was needed in the early phases of the COVID-19 pandemic and is still necessary for policy makers and healthcare professionals. This information allows us to better understand the risk of reinfection in previously infected individuals. Methods. We investigated the prevalence and duration of detectable antibodies against SARS-CoV-2 in sequentially collected samples from 379 healthcare professionals. Results. SARS-CoV-2 seroprevalence at inclusion was 5.3% (95% confidence interval (CI): 3.3-8.0%) and 25% of seropositive participants reverted during follow-up. At the end of follow-up, the calculated probability of having detectable antibodies among former seropositive participants was 72.2% (95% CI: 54.2-96.2%). Conclusion. Antibodies against SARS-CoV-2 were detectable in a subset of infected individuals for a minimum of 39 weeks.

3.
mBio ; 11(6)2020 10 30.
Article in English | MEDLINE | ID: covidwho-894828

ABSTRACT

The ultimate outcome of the coronavirus disease 2019 (COVID-19) pandemic is unknown and is dependent on a complex interplay of its pathogenicity, transmissibility, and population immunity. In the current study, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was investigated for the presence of large-scale internal RNA base pairing in its genome. This property, termed genome-scale ordered RNA structure (GORS) has been previously associated with host persistence in other positive-strand RNA viruses, potentially through its shielding effect on viral RNA recognition in the cell. Genomes of SARS-CoV-2 were remarkably structured, with minimum folding energy differences (MFEDs) of 15%, substantially greater than previously examined viruses such as hepatitis C virus (HCV) (MFED of 7 to 9%). High MFED values were shared with all coronavirus genomes analyzed and created by several hundred consecutive energetically favored stem-loops throughout the genome. In contrast to replication-associated RNA structure, GORS was poorly conserved in the positions and identities of base pairing with other sarbecoviruses-even similarly positioned stem-loops in SARS-CoV-2 and SARS-CoV rarely shared homologous pairings, indicative of more rapid evolutionary change in RNA structure than in the underlying coding sequences. Sites predicted to be base paired in SARS-CoV-2 showed less sequence diversity than unpaired sites, suggesting that disruption of RNA structure by mutation imposes a fitness cost on the virus that is potentially restrictive to its longer evolution. Although functionally uncharacterized, GORS in SARS-CoV-2 and other coronaviruses represents important elements in their cellular interactions that may contribute to their persistence and transmissibility.IMPORTANCE The detection and characterization of large-scale RNA secondary structure in the genome of SARS-CoV-2 indicate an extraordinary and unsuspected degree of genome structural organization; this could be effectively visualized through a newly developed contour plotting method that displays positions, structural features, and conservation of RNA secondary structure between related viruses. Such RNA structure imposes a substantial evolutionary cost; paired sites showed greater restriction in diversity and represent a substantial additional constraint in reconstructing its molecular epidemiology. Its biological relevance arises from previously documented associations between possession of structured genomes and persistence, as documented for HCV and several other RNA viruses infecting humans and mammals. Shared properties potentially conferred by large-scale structure in SARS-CoV-2 include increasing evidence for prolonged infections and induced immune dysfunction that prevents development of protective immunity. The findings provide an additional element to cellular interactions that potentially influences the natural history of SARS-CoV-2, its pathogenicity, and its transmission.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/virology , Coronavirus/genetics , Pneumonia, Viral/virology , RNA, Viral/chemistry , RNA, Viral/genetics , Animals , Base Sequence , COVID-19 , Evolution, Molecular , Genome, Viral , Humans , Nucleic Acid Conformation , Pandemics , SARS-CoV-2 , Sequence Alignment
4.
mSphere ; 5(3)2020 06 24.
Article in English | MEDLINE | ID: covidwho-612518

ABSTRACT

The pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has motivated an intensive analysis of its molecular epidemiology following its worldwide spread. To understand the early evolutionary events following its emergence, a data set of 985 complete SARS-CoV-2 sequences was assembled. Variants showed a mean of 5.5 to 9.5 nucleotide differences from each other, consistent with a midrange coronavirus substitution rate of 3 × 10-4 substitutions/site/year. Almost one-half of sequence changes were C→U transitions, with an 8-fold base frequency normalized directional asymmetry between C→U and U→C substitutions. Elevated ratios were observed in other recently emerged coronaviruses (SARS-CoV, Middle East respiratory syndrome [MERS]-CoV), and decreasing ratios were observed in other human coronaviruses (HCoV-NL63, -OC43, -229E, and -HKU1) proportionate to their increasing divergence. C→U transitions underpinned almost one-half of the amino acid differences between SARS-CoV-2 variants and occurred preferentially in both 5' U/A and 3' U/A flanking sequence contexts comparable to favored motifs of human APOBEC3 proteins. Marked base asymmetries observed in nonpandemic human coronaviruses (U ≫ A > G ≫ C) and low G+C contents may represent long-term effects of prolonged C→U hypermutation in their hosts. The evidence that much of sequence change in SARS-CoV-2 and other coronaviruses may be driven by a host APOBEC-like editing process has profound implications for understanding their short- and long-term evolution. Repeated cycles of mutation and reversion in favored mutational hot spots and the widespread occurrence of amino acid changes with no adaptive value for the virus represent a quite different paradigm of virus sequence change from neutral and Darwinian evolutionary frameworks and are not incorporated by standard models used in molecular epidemiology investigations.IMPORTANCE The wealth of accurately curated sequence data for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), its long genome, and its low substitution rate provides a relatively blank canvas with which to investigate effects of mutational and editing processes imposed by the host cell. The finding that a large proportion of sequence change in SARS-CoV-2 in the initial months of the pandemic comprised C→U mutations in a host APOBEC-like context provides evidence for a potent host-driven antiviral editing mechanism against coronaviruses more often associated with antiretroviral defense. In evolutionary terms, the contribution of biased, convergent, and context-dependent mutations to sequence change in SARS-CoV-2 is substantial, and these processes are not incorporated by standard models used in molecular epidemiology investigations.


Subject(s)
Betacoronavirus/genetics , Cytosine/analysis , Genome, Viral/genetics , Polymorphism, Single Nucleotide/genetics , Uracil/analysis , APOBEC Deaminases , Base Composition/genetics , Base Sequence/genetics , COVID-19 , Coronavirus Infections/pathology , Cytidine Deaminase/genetics , Humans , Middle East Respiratory Syndrome Coronavirus/genetics , Pandemics , Pneumonia, Viral/pathology , Severe acute respiratory syndrome-related coronavirus/genetics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL